Skip to main content
Log in

Statistical Physics Approach to Thermophoresis of Colloids

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Brownian colloidal particles dispersed in a fluid with a temperature gradient experience a driving force which produces a large biased steady density profile. This phenomenon, named thermophoresis, is quantified by the Soret coefficient \(S_T\). This problem is studied here within the Fokker–Planck formalism. Using the experimental observation of \(S_T\) it is possible to extract relevant analytical information about a temperature dependent nonequilibrium effective potential which can produce the thermophoresis force. It will be presented here a statistical physics derivation of this effective potential in terms of some physical parameters. Experimental data are analyzed within this theoretical scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Risken, H., Vollmer, H., Mörsch, M.: Matrix continued fraction solutions of the Kramers equation and their inverse friction expansions. Zeitschrift für Physik B 40, 343 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  2. Sancho, J., San Miguel, M., Dürr, D.: Adiabatic elimination for systems of Brownian particles with nonconstant damping coefficients. J. Stat. Phys. 28, 291 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  3. Duhr, S., Braun, D.: Why molecules move along a temperature gradient. Proc. Nat. Acad. Sci. 103, 19678 (2006)

    Article  ADS  Google Scholar 

  4. Braibanti, M., Vigolo, D., Piazza, R.: Does thermophoretic mobility depend on particle size? Phys. Rev. Lett. 100, 108303 (2008)

    Article  ADS  Google Scholar 

  5. Würger, A.: Thermal non-equilibrium transport in colloids. Rep. Prog. Phys. 73, 126601 (2010)

    Article  ADS  Google Scholar 

  6. Helden, L., Eichhorn, R., Bechinger, C.: Direct measurement of thermophoretic forces. Soft Matter 11, 2379 (2015)

    Article  ADS  Google Scholar 

  7. Reichl, M., Herzog, M., Götz, A., Braun, D.: Why charged molecules move across a temperature gradient: the role of electric fields. Phys. Rev. Lett. 112, 198101 (2014)

    Article  ADS  Google Scholar 

  8. Lüsebrink, D., Yang, M., Ripoll, M.: Thermophoresis of colloids by mesoscale simulations. J. Phys. 24, 284132 (2012)

    Google Scholar 

  9. Burelbach, J., Frenkel, D., Pagonabarraga, I., Eiser, E.: A unified description of colloidal thermophoresis. Eur. Phys. J. E 41, 7 (2018)

    Article  Google Scholar 

  10. Tierno, P., Golestanian, R., Pagonabarraga, I., Sagués, F.: Controlled swimming in confined fluids of magnetically actuated colloidal rotors. Phys. Rev. Lett. 101, 218304 (2008)

    Article  ADS  Google Scholar 

  11. Kuroiwa, T., Miyazaki, K.: Brownian motion with multiplicative noises revisited. J. Phys. A 47, 012001 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  12. Durang, X., Kwon, C., Park, H.: Overdamped limit and inverse-friction expansion for Brownian motion in an inhomogeneous medium. Phys. Rev. E 91, 062118 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. Van Kampen, N.G.: Diffusion in inhomogeneous media. Z. Phys. B 68, 135 (1087)

    Article  ADS  MathSciNet  Google Scholar 

  14. Van Kampen, N.G.: Diffusion in inhomogeneous media. J. Phys. Chem. Solids 49, 673 (1988)

    Article  ADS  Google Scholar 

  15. Pathria, R.K.: Statistical Mechanics. Elsevier (1972)

  16. Sancho, J.: Brownian colloids in underdamped and overdamped regimes with nonhomogeneous temperature. Phys. Rev. E 92, 062110 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support by the Ministerio de Economía y Competitividad (Spain) and FEDER (EU), under project FIS2015-66503-C3-P3, and fruitful discussions with Profs. R. Toral, Pietro Tierno, L. Ramírez–Piscina and M. Ibañes .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Sancho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sancho, J.M. Statistical Physics Approach to Thermophoresis of Colloids. J Stat Phys 172, 1609–1616 (2018). https://doi.org/10.1007/s10955-018-2110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2110-1

Keywords

Navigation